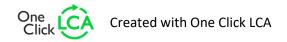


ENVIRONMENTAL PRODUCT DECLARATION

IN ACCORDANCE WITH EN 15804+A2 & ISO 14025

CM 900


Combimix

EPD HUB, HUB-4132

Published on 24.10.2025, last updated on 24.10.2025, valid until 24.10.2030

Life Cycle Assessment study has been performed in accordance with the requirements of EN 15804, EPD Hub PCR version 1.1 (5 Dec 2023) and JRC characterization factors EF 3.1.

GENERAL INFORMATION

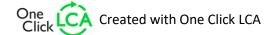
MANUFACTURER

Manufacturer	Combimix
Address	Verkstadsvägen 6, 746 40 Bålsta, Sweden
Contact details	miljo@combimix.se
Website	https://www.combimix.com/se/

EPD STANDARDS, SCOPE AND VERIFICATION

Program operator	EPD Hub, hub@epdhub.com
Reference standard	EN 15804:2012+A2:2019/AC:2021 and ISO 14025
PCR	EPD Hub Core PCR Version 1.1, 5 Dec 2023
Sector	Construction product
Category of EPD	Third party verified EPD
Parent EPD number	-
Scope of the EPD	Cradle to gate with options, A4-A5, and modules C1-C4, D
EPD author	Ebba Hultman, Combimix AB
EPD verification	Independent verification of this EPD and data, according to ISO 14025: ☐ Internal verification ☑ External verification
EPD verifier	Magaly Gonzalez Vazquez as an authorized verifier for EPD Hub

This EPD is intended for business-to-business and/or business-to-consumer communication. The manufacturer has the sole ownership, liability, and responsibility for the EPD. EPDs within the same product category but from different programs may not be comparable. EPDs of construction products may not be comparable if they do not comply with EN 15804 and if they are not compared in a building context.


PRODUCT

2

Product name	CM 900
Product reference	90005, 90003, 90009
Place(s) of raw material origin	Sweden, Europe
Place of production	Backamo & Bålsta, Sweden
Period for data	10/2023 - 9/2024
Averaging in EPD	Multiple factories
Variation in GWP-fossil for A1-A3 (%)	±3,86
A1-A3 Specific data (%)	77,2

ENVIRONMENTAL DATA SUMMARY

Declared unit	1 kg
Declared unit mass	1 kg
GWP-fossil, A1-A3 (kgCO₂e)	2,31E-01
GWP-total, A1-A3 (kgCO₂e)	2,32E-01
Secondary material, inputs (%)	9,79
Secondary material, outputs (%)	70,3
Total energy use, A1-A3 (kWh)	0,71
Net freshwater use, A1-A3 (m³)	0,01

PRODUCT AND MANUFACTURER

ABOUT THE MANUFACTURER

Combimix develops and manufactures mineral-based products for the construction industry. The assortments includes products for floor leveling, facade plastering, masonry, casting, concrete renovation and restoration mortar for cultural buildings.

PRODUCT DESCRIPTION

The leveling compound is suitable for new construction and renovation. The product is intended for indoor use on concrete substrates. It is used on uneven concrete substrates as filling material and load distributor for CM 920 Industri, CM 940 Industri Top, and CM 960 Industri Super Top.

The product is pumpable and self-leveling and can be applied in layer thicknesses of 5–100 mm. It has a compressive strength class of C25 (average 35 MPa), flexural strength class of F5 (average 7 MPa), and is classified as fire class A1fl.

Further information can be found at: https://www.combimix.com/se/

PRODUCT RAW MATERIAL MAIN COMPOSITION

Raw material category	Amount, mass %	Material origin
Metals	-	-
Minerals	100	Eurpoe
Fossil materials	-	-
Bio-based materials	-	-

BIOGENIC CARBON CONTENT

Product's biogenic carbon content at the factory gate

Biogenic carbon content in product, kg C	-
Biogenic carbon content in packaging, kg C	-

FUNCTIONAL UNIT AND SERVICE LIFE

3

Declared unit	1 kg
Mass per declared unit	1 kg

SUBSTANCES, REACH - VERY HIGH CONCERN

The product does not contain any REACH SVHC substances in amounts greater than 0,1 % (1000 ppm).

PRODUCT LIFE-CYCLE

SYSTEM BOUNDARY

This EPD covers the life-cycle modules listed in the following table.

Pro	Product stage			mbly age	Use stage E							nd of li	ife stag	ge		yond t system undar	1				
A1	A2	А3	A4	A5	B1	B2	В3	В4	В5	В6	В7	C1	C2	С3	C4	D					
×	×	×	×	×	MND	MND	MND	MND	MND	MND	MND	×	×	×	×	×					
Raw materials	Transport	Manufacturing	Transport	Assembly	Use	Maintenance	Repair	Replacement	Refurbishment	Operational energy use	Operational water use	Deconstruction/ demolition	Transport	Waste processing	Disposal	Reuse	Recovery	Recycling			

Modules not declared = MND. Modules not relevant = MNR

MANUFACTURING AND PACKAGING (A1-A3)

The product stage encompasses environmental impacts from the production of raw materials and ancillary materials used in manufacturing. This stage also includes electricity consumption by machinery, management of production waste at manufacturing facilities, and material losses occurring during manufacturing processes and electricity transmission.

Raw materials originate from Swedish and European suppliers, with primary components consisting of sand, cement, and filler materials. European materials are transported to Sweden via truck and ship, followed by

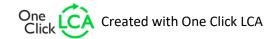
distribution to production facilities at Backamo and Bålsta by truck. The manufacturing process comprises raw material reception and blending. During blending, all raw materials are added to mixing vessels where they are thoroughly combined before being prepared for delivery.

TRANSPORT AND INSTALLATION (A4-A5)

Transportation impacts occurred from final products delivery to construction site (A4) cover fuel direct exhaust emissions, environmental impacts of fuel production, as well as related infrastructure emissions.

Environmental impact from transport to construction site (A4) includes direct emissions from fuel combustion, emissions from fuel production, and infrastructure-related emissions. The product is delivered from factory to customer by truck (16–32 tonnes, Euro 6) at full capacity utilization. For installation (A5), tap water is used.

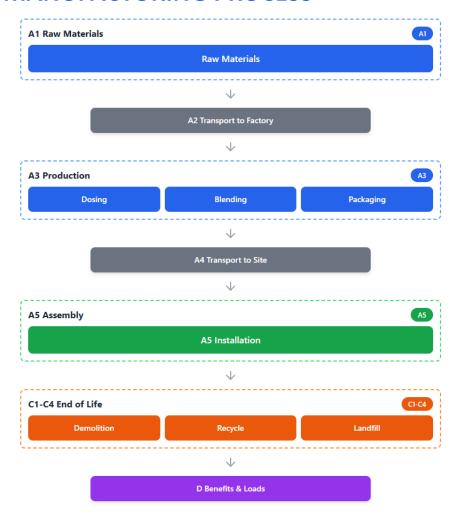
PRODUCT USE AND MAINTENANCE (B1-B7)


This EPD does not cover the use phase.

Air, soil, and water impacts during the use phase have not been studied.

PRODUCT END OF LIFE (C1-C4, D)

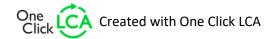
At the end of life, demolition is carried out mechanically (C1) using construction machinery. The demolition process consumes diesel fuel. The demolished material is collected and sorted as construction waste. All end-of-life product is transported to the closest waste treatment facilities (C2). In the waste processing stage (C3), concrete is crushed and sorted at the waste treatment plant. The majority of the material is directed to recycling, while a portion is sent to landfill (C4).


Due to the recycling potential, environmental benefits from material recovery are reported separately in module D.

MANUFACTURING PROCESS

LIFE-CYCLE ASSESSMENT

CUT-OFF CRITERIA


The study does not exclude any modules or processes which are stated mandatory in the reference standard and the applied PCR. The study does not exclude any hazardous materials or substances. The study includes all major raw material and energy consumption. All inputs and outputs of the unit processes, for which data is available for, are included in the calculation. There is no neglected unit process more than 1% of total mass or energy flows. The module specific total neglected input and output flows also do not exceed 5% of energy usage or mass.

The production of capital equipment, construction activities, and infrastructure, maintenance and operation of capital equipment, personnel-related activities, energy and water use related to company management and sales activities are excluded.

VALIDATION OF DATA

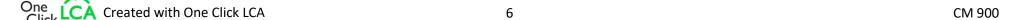
5

Data collection for production, transport, and packaging was conducted using time and site-specific information, as defined in the general information section on page 1 and 2. Upstream process calculations rely on generic data as defined in the Bibliography section. Manufacturer-provided specific and generic data were used for the product's manufacturing stage. The analysis was performed in One Click LCA EPD Generator, with the 'Cut-Off, EN 15804+A2' allocation method, and characterization factors according to EN 15804:2012+A2:2019/AC:2021 and JRC EF 3.1.

ALLOCATION, ESTIMATES AND ASSUMPTIONS

Allocation is required if some material, energy, and waste data cannot be measured separately for the product under investigation. All allocations are done as per the reference standards and the applied PCR. In this study, allocation has been done in the following ways:

Data type	Allocation
Raw materials	No allocation
Packaging material	No allocation
Ancillary materials	No allocation
Manufacturing energy and waste	Allocated by mass or volume


PRODUCT & MANUFACTURING SITES GROUPING

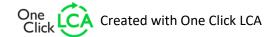
Type of grouping	Multiple factories
Grouping method	Based on average results of product group - by total mass
Variation in GWP-fossil for A1-A3, %	±3,86

This EPD is product and based on averaged data from multipe production facilities (Bålsta and Backamo). The climate impact varies only marginally between the factories (approximately $\pm 3,86\%$ for GWP-fossil A1-A3), which can primarily be attributed to minor differences in energy consumption and transport distances for raw materials. This variation complies with the requirements in GPI 2.9.

LCA SOFTWARE AND BIBLIOGRAPHY

This EPD has been created using One Click LCA EPD Generator. The LCA and EPD have been prepared according to the reference standards and ISO 14040/14044. The EPD Generator uses Ecoinvent v3.10.1/3.11 and One Click LCA databases as sources of environmental data. Allocation used in Ecoinvent 3.10.1/3.11 environmental data sources follow the methodology 'allocation, Cut-off, EN 15804+A2'.

ENVIRONMENTAL IMPACT DATA


The estimated impact results are only relative statements which do not indicate the end points of the impact categories, exceeding threshold values, safety margins or risks.

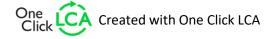
CORE ENVIRONMENTAL IMPACT INDICATORS – EN 15804+A2, EF 3.1

Impact category	Unit	A1	A2	А3	A1-A3	A4	A5	B1	B2	В3	B4	B5	В6	B7	C1	C2	С3	C4	D
GWP – total ¹⁾	kg CO₂e	1,80E-01	4,98E-02	2,02E-03	2,32E-01	1,62E-02	5,42E-05	MND	0,00E+00	1,14E-02	3,63E-03	2,19E-03	-7,30E-03						
GWP – fossil	kg CO₂e	1,80E-01	4,98E-02	6,68E-04	2,31E-01	1,61E-02	5,40E-05	MND	0,00E+00	1,14E-02	3,63E-03	2,18E-03	-7,28E-03						
GWP – biogenic	kg CO₂e	-1,59E-04	1,05E-05	1,35E-03	1,20E-03	3,66E-06	1,08E-07	MND	0,00E+00	2,26E-06	-3,71E-07	-6,95E-07	-6,95E-06						
GWP – LULUC	kg CO₂e	1,83E-04	2,33E-05	3,86E-07	2,07E-04	7,22E-06	1,10E-07	MND	0,00E+00	4,03E-06	3,72E-07	1,25E-06	-6,59E-06						
Ozone depletion pot.	kg CFC-11e	3,99E-09	7,31E-10	4,35E-11	4,77E-09	2,38E-10	7,74E-13	MND	0,00E+00	2,27E-10	5,56E-11	6,33E-11	-5,68E-11						
Acidification potential	mol H⁺e	6,19E-04	4,52E-04	1,17E-05	1,08E-03	5,51E-05	2,88E-07	MND	0,00E+00	3,57E-05	3,28E-05	1,55E-05	-4,45E-05						
EP-freshwater ²⁾	kg Pe	4,31E-05	3,37E-06	1,86E-07	4,67E-05	1,26E-06	3,28E-08	MND	0,00E+00	7,57E-07	1,05E-07	1,80E-07	-2,22E-06						
EP-marine	kg Ne	1,77E-04	1,23E-04	1,08E-06	3,01E-04	1,81E-05	5,53E-08	MND	0,00E+00	1,20E-05	1,52E-05	5,91E-06	-1,05E-05						
EP-terrestrial	mol Ne	2,00E-03	1,36E-03	3,92E-05	3,39E-03	1,97E-04	5,33E-07	MND	0,00E+00	1,31E-04	1,67E-04	6,45E-05	-1,28E-04						
POCP ("smog") ³)	kg NMVOCe	6,20E-04	4,34E-04	2,84E-06	1,06E-03	8,11E-05	1,77E-07	MND	0,00E+00	5,59E-05	4,97E-05	2,31E-05	-3,53E-05						
ADP-minerals & metals ⁴)	kg Sbe	3,51E-06	1,19E-07	1,97E-08	3,65E-06	4,50E-08	3,07E-10	MND	0,00E+00	3,73E-08	1,30E-09	3,47E-09	-3,90E-08						
ADP-fossil resources	MJ	1,96E+00	6,98E-01	1,25E-01	2,78E+00	2,34E-01	9,62E-04	MND	0,00E+00	1,60E-01	4,75E-02	5,36E-02	-8,74E-02						
Water use ⁵⁾	m³e depr.	2,20E-01	3,16E-03	2,60E-02	2,49E-01	1,16E-03	2,66E-05	MND	0,00E+00	7,87E-04	1,19E-04	1,55E-04	-1,09E-02						

¹⁾ GWP = Global Warming Potential; 2) EP = Eutrophication potential. Required characterisation method and data are in kg P-eq. Multiply by 3,07 to get PO4e; 3) POCP = Photochemical ozone formation; 4) ADP = Abiotic depletion potential; 5) EN 15804+A2 disclaimer for Abiotic depletion and Water use and optional indicators except Particulate matter and Ionizing radiation, human health. The results of these environmental impact indicators shall be used with care as the uncertainties on these results are high or as there is limited experience with the indicator.

7

ADDITIONAL (OPTIONAL) ENVIRONMENTAL IMPACT INDICATORS – EN 15804+A2, EF 3.1


Impact category	Unit	A1	A2	A3	A1-A3	A4	A5	B1	B2	В3	B4	B5	В6	В7	C1	C2	С3	C4	D
Particulate matter	Incidence	4,95E-09	4,22E-09	8,29E-11	9,25E-09	1,62E-09	3,27E-12	MND	0,00E+00	8,97E-10	7,10E-09	3,53E-10	-6,76E-10						
Ionizing radiation ⁶⁾	kBq U235e	8,54E-01	5,52E-04	6,04E-03	8,60E-01	2,04E-04	1,97E-05	MND	0,00E+00	2,04E-04	2,10E-05	3,37E-05	-6,15E-04						
Ecotoxicity (freshwater)	CTUe	5,37E-01	8,97E-02	3,87E-02	6,66E-01	3,31E-02	1,84E-04	MND	0,00E+00	2,10E-02	2,62E-03	4,50E-03	-2,09E-02						
Human toxicity, cancer	CTUh	7,93E-11	8,73E-12	9,46E-13	8,90E-11	2,66E-12	6,72E-14	MND	0,00E+00	1,94E-12	3,73E-13	4,03E-13	-1,95E-12						
Human tox. non-cancer	CTUh	1,54E-09	3,98E-10	1,95E-11	1,95E-09	1,52E-10	3,06E-12	MND	0,00E+00	1,01E-10	5,91E-12	9,25E-12	-5,69E-11						
SQP ⁷⁾	-	8,96E-01	5,79E-01	2,39E-03	1,48E+00	2,36E-01	2,25E-04	MND	0,00E+00	9,54E-02	3,33E-03	1,06E-01	-8,19E-02						

6) EN 15804+A2 disclaimer for Ionizing radiation, human health. This impact category deals mainly with the eventual impact of low-dose ionizing radiation on human health of the nuclear fuel cycle. It does not consider effects due to possible nuclear accidents, occupational exposure nor due to radioactive waste disposal in underground facilities. Potential ionizing radiation from the soil, from radon and from some construction materials is also not measured by this indicator; 7) SQP = Land use related impacts/soil quality.

USE OF NATURAL RESOURCES

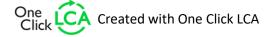
Impact category	Unit	A1	A2	А3	A1-A3	A4	A5	B1	B2	В3	B4	B5	В6	В7	C1	C2	С3	C4	D
Renew. PER as energy ⁸⁾	MJ	1,13E-01	8,76E-03	5,90E-02	1,81E-01	3,21E-03	1,72E-04	MND	0,00E+00	2,77E-03	3,01E-04	5,18E-04	-7,96E-03						
Renew. PER as material	MJ	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	MND	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00						
Total use of renew. PER	MJ	1,13E-01	8,76E-03	5,90E-02	1,81E-01	3,21E-03	1,72E-04	MND	0,00E+00	2,77E-03	3,01E-04	5,18E-04	-7,96E-03						
Non-re. PER as energy	MJ	1,51E+00	6,98E-01	1,25E-01	2,34E+00	2,34E-01	9,62E-04	MND	0,00E+00	1,60E-01	4,75E-02	5,36E-02	-8,74E-02						
Non-re. PER as material	MJ	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	MND	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00						
Total use of non-re. PER	MJ	1,51E+00	6,98E-01	1,25E-01	2,34E+00	2,34E-01	9,62E-04	MND	0,00E+00	1,60E-01	4,75E-02	5,36E-02	-8,74E-02						
Secondary materials	kg	9,79E-02	3,04E-04	2,81E-08	9,82E-02	9,97E-05	3,66E-06	MND	0,00E+00	7,34E-05	1,97E-05	1,35E-05	-9,75E-05						
Renew. secondary fuels	MJ	1,11E-02	3,19E-06	4,43E-10	1,11E-02	1,27E-06	2,43E-09	MND	0,00E+00	9,27E-07	5,16E-08	2,79E-07	-6,73E-07						
Non-ren. secondary fuels	MJ	1,80E-02	0,00E+00	0,00E+00	1,80E-02	0,00E+00	0,00E+00	MND	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00						
Use of net fresh water	m³	6,12E-03	9,26E-05	1,46E-04	6,36E-03	3,46E-05	1,81E-04	MND	0,00E+00	2,16E-05	3,14E-06	5,58E-05	-2,59E-04						

8

⁸⁾ PER = Primary energy resources.

END OF LIFE – WASTE

Impact category	Unit	A1	A2	А3	A1-A3	A4	A5	B1	B2	В3	B4	B5	В6	В7	C1	C2	C3	C4	D
Hazardous waste	kg	2,04E-03	1,13E-03	6,45E-05	3,24E-03	3,97E-04	5,91E-06	MND	0,00E+00	2,30E-04	5,29E-05	5,92E-05	-6,83E-04						
Non-hazardous waste	kg	6,73E-02	2,01E-02	1,39E-03	8,88E-02	7,35E-03	1,78E-03	MND	0,00E+00	4,85E-03	7,21E-04	1,35E-03	-1,22E-02						
Radioactive waste	kg	1,11E-05	1,35E-07	2,31E-06	1,36E-05	5,00E-08	5,06E-09	MND	0,00E+00	5,08E-08	5,16E-09	8,22E-09	-1,48E-07						

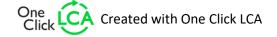

END OF LIFE – OUTPUT FLOWS

Impact category	Unit	A1	A2	А3	A1-A3	A4	A5	B1	B2	В3	B4	B5	В6	B7	C1	C2	С3	C4	D
Components for re-use	kg	3,24E-06	0,00E+00	0,00E+00	3,24E-06	0,00E+00	0,00E+00	MND	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00						
Materials for recycling	kg	3,23E-06	0,00E+00	0,00E+00	3,23E-06	0,00E+00	0,00E+00	MND	0,00E+00	0,00E+00	8,30E-01	0,00E+00	0,00E+00						
Materials for energy rec	kg	1,16E-05	0,00E+00	0,00E+00	1,16E-05	0,00E+00	0,00E+00	MND	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00						
Exported energy	MJ	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	MND	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00						
Exported energy – Electricity	MJ	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	MND	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00						
Exported energy – Heat	MJ	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	MND	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00						

ENVIRONMENTAL IMPACTS – EN 15804+A1, CML

Impact category	Unit	A1	A2	А3	A1-A3	A4	A5	B1	B2	В3	B4	B5	В6	B7	C1	C2	С3	C4	D
Global Warming Pot.	kg CO₂e	1,74E-01	4,95E-02	7,84E-04	2,25E-01	1,61E-02	5,39E-05	MND	0,00E+00	1,13E-02	3,61E-03	2,16E-03	-7,25E-03						
Ozone depletion Pot.	kg CFC-11e	3,95E-09	5,82E-10	3,78E-11	4,57E-09	1,90E-10	6,58E-13	MND	0,00E+00	1,81E-10	4,41E-11	5,03E-11	-4,79E-11						
Acidification	kg SO₂e	4,64E-04	3,56E-04	7,67E-06	8,28E-04	4,20E-05	2,40E-07	MND	0,00E+00	2,71E-05	2,31E-05	1,15E-05	-3,46E-05						
Eutrophication	kg PO ₄ ³e	6,03E-04	5,27E-05	2,00E-06	6,58E-04	1,02E-05	4,06E-08	MND	0,00E+00	6,90E-06	5,39E-06	3,64E-06	-6,71E-06						
POCP ("smog")	kg C ₂ H ₄ e	3,30E-05	2,17E-05	3,66E-07	5,50E-05	3,75E-06	1,83E-08	MND	0,00E+00	2,58E-06	1,73E-06	1,08E-06	-3,05E-06						
ADP-elements	kg Sbe	1,21E-06	1,16E-07	1,97E-08	1,34E-06	4,39E-08	2,90E-10	MND	0,00E+00	3,65E-08	1,27E-09	3,40E-09	-3,84E-08						
ADP-fossil	MJ	1,72E+00	6,89E-01	1,25E-01	2,53E+00	2,31E-01	6,15E-04	MND	0,00E+00	1,57E-01	4,72E-02	5,31E-02	-7,77E-02						

9



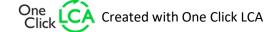
ADDITIONAL INDICATOR – GWP-GHG

Impact category	Unit	A1	A2	А3	A1-A3	A4	A5	B1	B2	В3	B4	B5	В6	B7	C1	C2	С3	C4	D
GWP-GHG ⁹⁾	kg CO₂e	1,80E-01	4,98E-02	6,69E-04	2,31E-01	1,62E-02	5,41E-05	MND	0,00E+00	1,14E-02	3,63E-03	2,19E-03	-7,29E-03						

⁹⁾ This indicator includes all greenhouse gases excluding biogenic carbon dioxide uptake and emissions and biogenic carbon stored in the product. In addition, the characterisation factors for the flows – CH4 fossil, CH4 biogenic and Dinitrogen monoxide – were updated. This indicator is identical to the GWP-total of EN 15804:2012+A2:2019 except that the characterisation factor for biogenic CO2 is set to zero.

SCENARIO DOCUMENTATION

Manufacturing energy scenario documentation

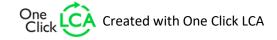

Scenario parameter	Value
Electricity data source and quality	Electricity, Sweden, 2022 (One Click LCA)
Electricity CO2e / kWh	0,12

Transport scenario documentation A4

Scenario parameter	Value
Fuel and vehicle type. Eg, electric truck, diesel powered truck	Market for transport, freight, lorry 16-32 metric ton, EURO6
Average transport distance, km	150
Volume capacity utilization factor	1

Installation scenario documentation A5

Scenario information	Value
Ancillary materials for installation (specified by material) / kg or other units	-
as appropriate	
Water use / m³	0,18
Other resource use / kg	-
Quantitative description of energy type (regional mix) and consumption during the installation process / kWh or MJ	-
Waste materials on the building site before waste processing, generated by the product's installation (specified by type) / kg	_
Output materials (specified by type) as result of waste processing at the building site e.g. collection for recycling, for energy recovery, disposal (specified by route) / kg	-
Direct emissions to ambient air, soil and water / kg	-



End of life scenario documentation

Scenario information	Value
Collection process – kg collected separately	1.18
Collection process – kg collected with mixed construction waste	-
Recovery process – kg for re-use	-
Recovery process – kg for recycling	0.83
Recovery process – kg for energy recovery	-
Disposal (total) – kg for final deposition	0.35
Scenario assumptions e.g. transportation	Transport by lorry 50km

12

VERIFICATION STATEMENT

VERIFICATION PROCESS FOR THIS EPD

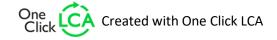
This EPD has been verified in accordance with ISO 14025 by an independent, third-party verifier by reviewing results, documents and compliancy with reference standard, ISO 14025 and ISO 14040/14044, following the process and checklists of the program operator for:

- This Environmental Product Declaration
- The Life-Cycle Assessment used in this EPD
- The digital background data for this EPD

Why does verification transparency matter? Read more online
This EPD has been generated by One Click LCA EPD generator, which has been verified and approved by the EPD Hub.

THIRD-PARTY VERIFICATION STATEMENT

I hereby confirm that, following detailed examination, I have not established any relevant deviations by the studied Environmental Product Declaration (EPD), its LCA and project report, in terms of the data collected and used in the LCA calculations, the way the LCA-based calculations have been carried out, the presentation of environmental data in the EPD, and other additional environmental information, as present with respect to the procedural and methodological requirements in ISO 14025:2010 and reference standard.


I confirm that the company-specific data has been examined as regards plausibility and consistency; the declaration owner is responsible for its factual integrity and legal compliance.

I confirm that I have sufficient knowledge and experience of construction products, this specific product category, the construction industry, relevant standards, and the geographical area of the EPD to carry out this verification.

I confirm my independence in my role as verifier; I have not been involved in the execution of the LCA or in the development of the declaration and have no conflicts of interest regarding this verification.

Magaly Gonzalez Vazquez as an authorized verifier for EPD Hub Limited 24.10.2025

